Year 12 Further Maths - Pure Teacher

Topic		Ref	Ex
Matrices and Transformations	Introduction to Matrices - Add, subtract and multiply conformable matrices. - Multiply a matrix by a scalar. - Understand and use zero and identity matrices.	$\begin{aligned} & \hline \text { P3.1 } \\ & \text { P3.2 } \end{aligned}$	
	Matrices and Transformations - Find the 2×2 matrix associated with a linear transformation and vice versa. - Reflection in coordinate axes and lines $y= \pm x$ - Rotation through any angle about (0,0) - Stretches parallel to the x-axis and y-axis - Enlargement about centre (0,0), with scale factor $\mathrm{k},(\mathrm{k} \neq 0)$. - Successive transformations - A followed by B is represented by the matrix BA. - Find 3×3 matrices representing 3D transformations - Reflection in plane $x=0, y=0$ or $z=0$ - Rotations through multiples of 90° about the x, y or zaxes.	P3.3	
	Invariant Points - Find co-ordinates of invariant points for a given transformation - Find equations of invariant lines for a given transformation	P3.4	
Matrices and Transformations Assessment			
Complex Numbers	Introduction to Complex Numbers - Understand the definition of a complex number - Understand and use the terms real part and imaginary part. - Add, subtract, multiply and divide complex numbers in the form $x+i y$ with x and y real - Find the complex conjugate - Solve any quadratic equation with real coefficients. - Know that the non-real roots of quadratic equations (with real coefficients) form a conjugate pair - Find the square root of a complex number	$\begin{aligned} & \hline \text { P2.1 } \\ & \text { P2.2 } \\ & \text { P2.3 } \end{aligned}$	
	The Argand Diagram - Use and interpret Argand diagrams. - Represent the sum or difference of two complex numbers on an Argand diagram.	P2.4	
Complex Numbers Assessment			

Year 12 Further Maths - Pure Teacher

Topic		Ref	Ex
Matrices and their Inverses	2x2 Matrices - Calculate the determinant of a 2×2 matrix - Use the property $\operatorname{det} A B=\operatorname{det} A \times \operatorname{det} B$ - Know that the magnitude of the determinant of a 2×2 matrix gives the area scale factor of the associated transformation, and that the sign of the determinant indicates whether the orientation of the image is preserved or reversed. - Understand what is meant by a singular matrix and a non-singular matrix - Calculate the inverse of a 2×2 matrix - Prove and use the property $(A B)^{-1}=B^{-1} A^{-1}$	$\begin{aligned} & \text { P3.5 } \\ & \text { P3.6 } \end{aligned}$	
	3x3 Matrices - Calculate the determinant of a 3×3 matrix either manually or using the matrix facility on a calculator. - Know that the magnitude of the determinant of a 3×3 matrix gives the volume scale factor of the associated transformation, and that the sign of the determinant indicates whether the orientation of the image is preserved or reversed. - Calculate the inverse of a 3×3 matrix either manually or using the matrix facility on a calculator.	$\begin{aligned} & \text { P3.5 } \\ & \text { P3.6 } \\ & \text { P3. } \end{aligned}$	
	Matrices and Simultaneous Equations - Solve three linear simultaneous equations in three variables by use of the inverse matrix - Interpret geometrically the solution and failure of solution of three simultaneous linear equations. - meet in a point - form a sheaf - form a prism or are otherwise inconsistent	$\begin{aligned} & \hline \text { P3.7 } \\ & \text { P3.8 } \end{aligned}$	
Matrices and their Inverses Assessment			
Roots of polynomials	Roots and coefficients - Know about the relationships between roots and coefficients of quadratic, cubic and quartic equations. - Be able to form a new equation whose roots are related to the roots of a given equation by a linear transformation.	$\begin{aligned} & \text { P4.1 } \\ & \text { P4.2 } \end{aligned}$	
	Complex Roots of Polynomials - Understand that non-real roots of polynomial equations with real coefficients occur in conjugate pairs. - Be able to solve cubic or quartic equations with real coefficients.	P2.1	
Roots of Polynomials Assessment			

Year 12 Further Maths - Pure Teacher

Topic		Ref	Ex
Complex Numbers and Geometry	Modulus and Argument - Find the modulus and argument of a complex number - Convert between the Cartesian form and the modulusargument form of a complex number. - Multiply and divide complex numbers in modulusargument form	$\begin{aligned} & \text { P2.5 } \\ & \text { P2.6 } \end{aligned}$	
	Loci in the complex plane - To construct and interpret simple loci in the Argand diagram. $\begin{array}{ll} \circ & \|z-a\|=r \\ 0 & \operatorname{Arg}(z-a)=\beta \\ 0 & \|z-a\|=\|z-b\| \end{array}$ - Understand and use Radians as an alternative angle measure.	P2.7	
Complex Numbers and Geometry Assessment			
Sequences, Series and Proof	Summing Series - Understand and use formulae for the sums of integers, squares and cubes and use these to sum other series.	P4.3	
	Proof by Induction - Construct proofs using mathematical induction. - Contexts include sums of series, divisibility and powers of matrices.	P1.1	
Sequences and Series Assessment			
Vectors and 3-D Space	The Scalar Product - Calculate the scalar product of two vectors - Use the scalar product to find the angle between two vectors - Check whether two vectors are perpendicular using the scalar product.	$\begin{aligned} & \text { P6.3 } \\ & \text { P6.4 } \end{aligned}$	
	The Equation of a Line - Express the equation of a line in three dimensions in vector form and in Cartesian form - Calculate the angle between two lines using the scalar product - Find the point of intersection of two straight lines given in vector form - Understand that two lines in three dimensions may either intersect, be parallel or be skew	P6. 1	
	The Equation of a Plane - Form and use vector and Cartesian equations of a plane - Convert between the different forms for the equation of a plane - Understand that a vector which is perpendicular to a plane is perpendicular to any vector in the plane - Find the angle between two planes by finding the angle between their normals - Find the angle between a line and a plane - Find the point of intersection of a line and a plane	$\begin{aligned} & \hline \text { P6.2 } \\ & \text { P6.3 } \\ & \text { P6.5 } \end{aligned}$	

Year 12 Further Maths - Pure Teacher

Topic		Ref	Ex
Vectors and 3-D Space (cont.)	Finding Distances - Find the perpendicular distance from a point to a plane - Find the perpendicular distance from a point to a line - Find the perpendicular distance between two lines	P6.5	
Vectors and 3-D Space Assessment			
Further Calculus	Volumes of Revolution - Calculate the volume of a solid of revolution formed by rotating a plane region about the x -axis or y -axis. - Derive the formulae for calculating the volume of revolution.	P5.1	
Further Calculus Assessment			

